
IV

THE LEDA PLATFORM
FOR

COMBINATORIAL AND GEOMETRIC COMPUTING

K Mehlhorn

Rapporteur: Ian Welch

I

I

IV . 2

. 1

1

IV . 3

T he LEDA P latform
for

Combinatorial and Geometric Comput ing

Kurt Mehlhorn' Stefan Naher t Christian Uhrigl

September 1, 96

Abstract

We give an overview of LEDA and an account of its development. We discuss
our motivation for building LED,<\, and to what extent we have reached our goals .
\~'e also discuss some recent theoretical developments. This paper contains no new
technical material. It is intended as a guide to further papers about the system .
We also refe r the reader to http : / / www.mp i -sb . mpg .de /LEDA / leda.html .
http://www/infor matik.uni - halle.de/-naeher. and
http : //www.mpi- sb . mpg. de r mehlhorn for more information.

W hat is LED A?

LEDA [13 . 16] aims at providing a comprehensive software platform for combinatorial and
geometric computing. Combinatorial and geometric computing is a core area of computer
science . In fact, most CS curri cula contain a course in data structures and algorithms.
The area deals with objects such as graphs , sequences, dictionaries , trees, shortest paths,
flows, matchings, points, segments, lines, convex hulls, and Voronoi diagrams and forms
the basis for application areas such as discrete optimization, scheduling, t raffic control,
CAD, and graphics. We discuss different aspects of the LEDA system .

Cover age: LEDA provides a sizable collection of data types and algorithms. This
collection includes most of the data types and algorithms described in the text books of
the area ([1, 10,21,6, 18,23, 19 , 9, 22 ,17]). In particular , it includes stacks, queues, lists,
sets, dictionaries , ordered sequences, partitions, priority queues, directed, undirected, and
planar graphs, lines, points , planes, and polygons, and many algorithms in graph and
network theory and computational geometry, e.g., shortest paths, matchings, maximum
flow, min cost flow. planarity testing , spanning trees, biconnected and strongly connected
components, segment intersection , convex hulls, Delaunay triangulations, and Voronoi
diagrams .

. " lax·Planck·In ,itut fiir In formatik. 1m Stadtwald , 66123 Saarbriicken
t :VIati n· Luther· Cniversitiit I-IaIle· WilLen berg, FB Mathematik und lnformatik, Weinbergweg 17_

060099 Ha lle
t LEDA Software GmbH. POsLfach 15 11 01 , 66041 Saarbriicken

IV . 4

Ease of Use: The library is easy to use. In fact. only a sm all frac t ion of our users
are algorithms experts and I1lany of our users are not even computer sc ientists. LEO.-\
supports applicat.ions in a broad range of areas. It has already been used in such di ­
verse areas as code optimization. VLSI design. robot mot ion planning. traffic scheduling,
machine learning and computational biology.

The LEO.-\ manual [16] gives prec ise and readable specificat ions for the data types
and algorithms mentioned above . The specificat ions are short (typically not more than
a page) . general (so as to allow several implementations) and abstract (so as to hide a ll
details of the implementation).

In many cases LEDA programs are very close to the typical text book presentation of
the underlying algori t hms. The goal is the equation

.-\lgorithm + LEO A = Program.

\,Ve gIve an example. Dijkstra's shortest path algorithm takes a directed graph G =
(j. ... E). a node s E \i , called the source, and a non-negative cost function on the edges
cost : E --+ IR. ?:o. I t computes for each node v E \i the distance from s . A typical text
book presentat ion of the algori thm is as follows.

set dist(s) to O.
set dist(v) to infinity for v different from s.

declare all nodes unreached .

while there is an unreached node
{ let u be an unreached node with minimal dist -value.

declare u reached .

forall edges e = (u,v) out of u
set dist(v) = mine dist(v), dist(u) + cost(e))

}

The text book presentation will then continue to discuss the implementation of line (*l·
It will state that the pairs {(v, dist(v)); v unreached} should be stored in a priority queue ,
e .g ., a Fibonacci heap , because thi s will allow the selection of an unreached node with
minimal distance value in logari thmic time. It will probably refer to some other chapter
of the book for a discuss ion of priori ty queues.

We now give the corresponding LEDA program; it is very similar to the presentation
above.

#include <LEDA/graph.h>
#include <LEDA/node_pq.h>

void DIJ KSTRA(const graph &G, node s, const edge_array<double>& cost ,
node _array<double>& dist)

{ node_pq<double> PQ(G);
node v;
edge e;

forall _nodes(v,G)
{ if (v == s) dist[v] = 0 ; els e dist[v] = MAXDOUBLE;

·,

. I

}

PQ.insert(v,dist[v]);
}

while (IPQ.empty())
{ node u = PQ.del _min();

forall _adj _edges(e,u)
{ v = target(e);

IV . S

double c = dist[u] + cost[e];
if (c < dist[v])
{ PQ.decrease _inf(v,c); dist[v] = c; }

}

}

We start by including the graph and the node priority queue data type. We use edge_armys
and node_aTmys (arrays indexed by edges and nodes respect ively) for the funct ions cost
and dist. vVe delare a priority queue PQ for the nodes of graph G. It stores pairs
(v . dist [vll and is empty initially. The foralLnode s-loop initializes d·ist and PQ. In the
main loop we repeatedly select a pair (11, dist[·u]) with minimal distance value and then
scan through all adjacent edges to update distance values of neighboring vertices .

Correctness: vVe try to make sure that the programs in LEDA are correct. We start
from correct algorithms. we document our implementations carefully (at least recently),
we test them extensively, and we have developed program checkers (see subsection 4.1)
for some of them. v\le want to emphasize that many of the algorithms in LEDA are
qui te intricate and therefore non-trivial to implement. In the combinatorial domain it is
frequently possible to obtain a correct implementation by sacrifycing efficency, e.g., by
using linear search in the realization of a dictionary. In the geometric domain it is usually
difficult to obtain a correct implementation even if efficiency plays no role . This is due to
the so-called degeneracy and precision problem [1 21. The geometric algorithms in LEDA
use exact arithmetic and are therefore free from failures due to rounding errors. Moreover ,
they can handle all degenerate cases.

Effic iency: LEDA contains the most effic ient realizations known for its types. For
many data types the user may even choose between different implementations, e.g. , for
dictionaries he may choose between ab-trees, BB [al-t rees , dynamic perfect hashing, and
skip lists. The declarations

dictionary<string,int> Dl;
_dictionary<string,int,skip_list> D2;

declare Dl as a dictionary from string to int with the default implementation and select
the skip li st implementation for D2.

Availability: LED A is realized in C++ and runs on many different platforms
(Cnix. Windows95, Windows NT , OS/ 2) with many different compilers. It is not
in the public domain but it is availabe free of charge for academic use. See
http : //www.mpi - sb .mpg . de / LEDA/leda.ht ml.

IV . 6

History: We started the project in the fall of 1988. We spent the first 6 months on
specifications and on selecting our ilnplelllE'ntC1t ioll language. Our test cases \vere priority
queues. dict ionaries. parti t ions. and algorithms for shortest paths and minimum spanning
trees. \'ie came up \\"i th the item concept as an abstraction of the notion "pointer into a
data structure". It worked successfully for the three data types mentioned above and we
arC' no\\" using it for most data types in LEDA. Concurrently with searching for the correct
specifications \\"e invest igated se\'erallanguages fo r their suitabi li ty as our implementat ion
platform. We looked at Smalltalk. :'IIodula. Ada. Eiffel. and C++. We wanted a language
that supported abstract dat.a. types and type parameters (polymorphism) and that was
widely available. We \\"rote sample programs in each language . Based on our experiences
W'e selected C++ because of its flexib ili ty. express ive power , and availability. vlie are even
more convinced now that our choice was the right one .

. -\ first publication about LEDA appeared in :'I'IFCS 1989 (Lecture Note in Computer
Science. Volume 379) and ICALP 1990 (Lecture Notes in Computer Science, Volume
443). Stefan Naher became the head of the LED A project and he is the main designer
and implemen ter of LEDA.

In the second half of 1989 and during 1990 Stefan Naher implemented a fir st version
of the combinatorial part (= data structures and graph algori thms) of LED A (Version
1.0). Version 2.0 allowed to use arbi t rary data types (not only pointer and simple types)
as actual type parameters of parametrized data types. It included a fir st implementation
of the two-dimensional geometry library (libP) and an interface to the X-Window system
for graphical input and output (data type window) . Version 3.0 switched to the template
mechanism to realize parametrized data types (macro substitut ion was used before), intro­
duced implementation parameters that allow to choose between different implementations,
extended the LED A memory management system to user-defined classes, and further im­
proved the efficiency of many data types and algorithms. Version 3. 1 provided a more
efficien t graph data type and contained new data types (arbi t rary precision number types
and basic geometric objects) used for robust implementations of geometri c algorithms
and Versions 3.2 and 3.3 contained more geometry and new tools for documentation and
manual production .

LEDA Software GmbH was founded in early 1995.

2 Why did we build LEDA?

We had four main reasons :

1. We had always felt that a significant fr ac tion of the research done in the algorithms
area was emminently practical. However, only a small part of it was actually used.
We frequently heard from our former students that the effor t needed to implement an
advanced data structure or algori thm is too large to be cost-effective. vVe concluded
that algorithms research must inchtde implementation 'if the field wants to have
maxim:nm impact.

2. Even within our own research group we found different implementations of the same
balanced tree data st ructure. Thus there was constant reinvent ion of the wheel even
within our own t ight group.

IV.7

3. '. [any of our students had implpI1lf'nred algori thms for their master' s thes is. \ \'ork
ill\'ested by these students was usually lost after the students graduated. vVe had
no depository for implementa tions.

~. The specifications of advanced data types which we gave in class and which we found
in text books. including the one writ ten by one of the authors. were incomplete and
not suffi ciently abstract. They conta ined phrases of the form : "Given a pointer to a
nocle in the heap its key can be decreased in constant amortized t ime" . This implied
that a user of a data st ructure had to have knowledge of its implementation. As a
consequence combining implementat ions was a non-trivial task. A case in point is
the shortest path problem in graphs. We taught priority queues in the early weeks
of an algorithm course and Dijkst ra's algorithm for the shortest path problem in
later weeks. Our students found it difficult to combine the programs.

The goal of the LEDA proj ect is to overcome these shortcomings by creating a platform
for combinatorial and geometr ic computing. T he LEDA li brary should contain the major
findings of the algori thms community in a form that makes them directly accessible to
non-experts hav ing only a limited knowledge in the area. In this way we hoped to reduce
the ga.p between research and application.

3 Did we achieve our goals?

We believe that we have reached the last goal and have at least partially reached the first
three goals.

LED A was first distributed in the summer of 1990. Its user community has grown
ever since. LED A is now used at more than 1500 academic and indust rial sites in over 50
different countries world-wide. Industrial use started in 1994. Many users of LEDA are
outside computer science and only a small fract ion of our users are from the algorithms
communi ty. 'vVe t herefore believe that we have reached our first two goals. The impact of
algorithms research has increased and there is considerable use of LEDA and hence reuse
of implementations. However. the gap between algorithms research and algori thms use is
still quite large. In particular, many of the non-expert users of LEDA complain that a
t utorial is miss ing. We hope that the for thcoming LEDAbook [14] will help.

vVe have also partially achieved our third goal. We now do have a depository for our
students work. 'vVe do not have a st rategy yet which allows persons outside our research
groups to contribute to LEDA. We hope to have made a significant step in this direction
recently. vVe redesigned our documentation tools and now make them publicly available
with the LED A release. This allows other reseachers to produce LEDA-style manual pages
and documentations and should make it easier to develop extensions of LEDA that gain
widespread use.

vVe 11ave achieved our last goal. T he specificat ions of our data types are sufficently
abstract and precise so as ' to allow their combination without any knowledge of imple­
mentation. \Ve have seen an example in sect ion 1. iVlany of our specifications are based
on the so-called 'item concept which gives an abst ract treatment of pointers into a data
structure. Different components of LED A can be combined without knowledge of the
implementation.

IV .S

The project also had a number of positi\'C' side-eft'ects which we did not foresee . Firstly.
LED.-\.· s wide use gives us tremendous sati sfaction' . Secondly, the experiences with the
system suggest many difficult and well motivated problems for theoretical algorithms
research. 'v\"e will di scuss prognun checking and theoret ica l issues in the implement ation
of geomet ric algori thms below. The system has changed the 'Way 'We do alg07'ithms TeseaTch.

4 R ecent de velopme nts

.-\. strength of the LED,-\, project is its st rong theoretical underpinning. We bel-ieve that
only O·ItT st7'Ong theoTctical backgro·ltnd allo'Wed 'IlS to bnild LEDA. In the last two years we
paid particular attention to program checking and the correct implementation of geometric
programs.

4 .1 Program che cking

Programming is a notoriously errorprone task; this is even true when programming IS

interpreted in a narrow sense : going from a (correct) algori thm to a program. The
standard way to guard against coding errors is program testing. The program is exercised
on inputs for whi ch the output is known by other m eans, typically as t he output of an
alternative program for the same task. Program testing has severe limitations:

• It is usually only done during the testing phase of a program. Also, it is difficult to
determine the "correct" sui te of test inputs .

• Even if appropriate test inpu ts are known it is usually difficult to determine the
correct outputs for these inputs: alternati ve programs may have different input and
ou tput conventions or may be too inefficient to solve the test cases.

Given that program verification, i. e., fo rm al proof of correctness of an implementation,
will not be available on a pract ical scale for some years to come, program checking has been
proposed as an extension to testing [2, 3]. The cited papers explored program checking in
the area of algebraic , numerical , and combinatorial computing. In [15 , 11,8] we discuss
program checkers for planari ty testing and a variety of geometri c tasks. '-IVe have also
added program checkers to some of the LED A programs, e.g., the planarity test provides
a planar drawing for a planar graph and a Kuratowski subgraph for a non-planar graph .
.-\. user of t he planarity algorithm has thus the possib ility to verify that the output of the
algori thm is correct.

4.2 Imple mentation of geometric algorithms

Geomet ri c algorithms are frequently formlatecl under two unrealistic assumptions: com­
puters are assumed to use exact real ari thmetic (in the sense of mathematics) and inputs
are assumed to be in general position. The naive use of floating point arithmetic as
an approximat ion to exact real ari thmetic very rarely leads to correct implementations.
In a sequence of papers [4 , 20 , 12 , 5. 7] we investigated the degeneracy and precision

L\Ve sL aLed above that algorith rns research rnllst include implementat ion to have III1:lXilllai i llll.nu.: L. 'vVt!
might add: wi thout implementation algorithm research is less rewarding.

, .

IV.9

issues and extended LEDA based on our theoret ical work. LED.'\" now provides exact
geomet ri c kernels for two-dimensional and higher dimens ional computational geomet ry
and also conect implementations for basic geometri c tasks, e.g .. two-dimensional convex
hulls. Delaunay diagrams . Voronoi diagrams. point location. line segment intersection .
and higher-d imensional convex hulls and Delaunay diagrams.

R efe re nces

[I] A. V. Aho .. J. E. Hopcroft . and.J.D. Ullman. Data stnLdnres and atgor-ithms. Acldison­
Wesley. 1983.

[2] :'II. Blum and S. E annan . Programs That Check Their \Nork . In Proc. of the 21th
Ann-nat A CM Symp. on Theory of Computing, 1989.

[3] :'I I. Blum, !\I. Luby, and R. Rubinfeld. Self-test ing/correcting with app licat ions to
numerical problems. In Proc. 22nd Ann-nat ACM Symp. on Th eory of Computing.
pages ,3- 83. 1990.

[4] Ch. Burnikel. E. !\·lehlhorn , and S. SchilTa. On degeneracy in geometri c computa­
tions. In Proc. SODA 94, pages 16- 23. 1994.

[5] Ch. Burnikel. I~. :Vlehlhorn . and St. SchilTa. How to compute the Voronoi diagram of
line segments: Theoretical and experimental resul ts . In Springer-Verlag Berlin/New
York. ed itor. LNCS. volume 855 of Proceedings of ESA '94, pages 227- 239, 1994.

[6] T. H. Cormen. C. E. Leiserson, and R.L. Rivest. Introd'nction to A lgorithms. :-HT
Press/:vlcGraw-Hill Book Company, 1990.

[,I A. Faini. G.- J . Giezeman , L. Eettner , S. Schina, and S. Schiinherr. The CGA L
I~ernel: A basis for geometric compu tation. To appear at Workshop on Appl-ied
Computational Geometry (WA CG96), 1996.

[8] C. Hundack. K. Mehlhorn . and S. Naher. A Simple Linear Time Algori thm for
Ident ify ing I~urato\Vsk i Subgraphs of Non-Planar Graphs. Manuscript , 1996.

[9] J.H. I~ings ton . Algorithms and Data Structures. Addison-Wesley Publishing Com­
pany, 1990.

[10] I~ . Mehlhorn. Data stnLctures and algo!'ithms 1,2, and 3. Springer , 1984.

[11] K. :'I'Iehlhorn and P. Mutze!. On the Embedding Phase of the Hopcroft and Tarjan
Planarity T esting Algorithm. Algorithmica, 16(2}:233- 242 , 1995.

[12] I~. Mehlhorn and S. Nii.her. T he implementation of geometric algorit hms. In 13th
W orld Computer Congress IFIP94. volume 1, pages 223- 231. Elsevier Science B .V.
:\orth-Holland. Amsterdam. 1994.

[13] I~ . :'Ilehlhorn and S. Naher. LED"\" : .'\" platform for combinatorial and geometric
compll ting. Comm:nnications of the A CM , 38(1):96-102 , 1995.

J

IV . I0

[1.J] I~.), Iehlhorn and S. \';;her . The LED.-\ Platform for Combinatorial and Geometric
Computing. Cambridge Cni" ersity Press. forthcoming, 1997.

[15] E.), Iehlhorn. S. \'iiher. T. Schilz . S. Schina.),1. Seel, R. Seide!. and Ch. t:hrig.
Checking Geomet ri c Programs or Verificat ion of Geometric Structures. In Proc. of
the 12th Annltal Sym posium on Computational Geometry, pages 159- 165. 1996.

[16] S. \'iiher and Ch. Chrig. The LED.-\ User),Ianual (Version R 3.2). Technical Report
!\IPI-I-95-1-002 .),Iax-Planck- Institut ftir Informatik , 1995.

[17] .J. Nievergelt and E.H . Hinrichs. Algorithms and Data Structures. Prentice Hall Inc.,
1993.

[18] J. O'Rourke. Com)mtational Geometry in C. Cambridge University Press, 1994.

[19] R. Sedgewick. Algorithms. ,-\ddison-Wesley Publishing Company, 1991.

[20]), Iichael See!. Eine Implementierung abstrakter Voronoidiagramme. Master's thesis,
),hx-Planck- Inst itut flir Informatik, 1994.

[n] R.E. Tarjan . Data structures and network algor ithms. In CBMS-NSF Regional
Confe"ence Series in Appl-ied Mathematics, volume 44, 1983.

[22] c..J. van vVyk. Data Sh"ltct'ltres and C programs. Addison-Wesley P ublishing Com­
pany, 1988.

[23] D. Wood. Data Str-nctltres, Algo"ithms, and Performance. Addison-Wesley Publish­
ing Company. 1993.

DISCUSSION

Rapporteur: Ian Welch

Lecture One

IV . 11

Whilst Professor Mehlhorn was explain ing a slide on node priority queues (NPQs)
Professor Paterson asked what is the NPQ structure's relationship to the graph structure.
Professor Paterson observed that from the documentation the NPQ appeared just to be a set
of pairs of priorities and edges with no explicit reference to graph structure . Professor
Mehlhorn replied that the priority queue data structure could be associated with anything
and the NPQ was itself derived from the standard priority queue to deal with graphs, also
the documentation that was shown was a precis of the full documentation included with
LEDA. Professor Paterson asked if standard priority queues included the increase and
decrease methods shown for the NPQ. Professor Mehlhorn replied that this was a
specialisation to handle graphs.

When Professor Mehlhorn was outlining the history of LEDA Professor Randell asked
what was the principle for selection of programming language for the implementation of
LEDA. Professor Mehlhorn responded that his group had spent a considerable amount of
time choosing the implementation language and ended choosing C++ because they found it
more expressive than other languages for their purposes. For instance the group had
decided that their ability to specify parameterised data types was important and at the time
(during the late eighties) only C++ provided any sort of support for this. After Professor
Mehlhorn had finished the lecture and invited questions from the floor Professor Randell
began by asking a question about the quality control aspects to LEDA. He wondered if the
LED A library would remain faithful to the abstractions that Professor Mehlhorn's group
had devised if outsiders contributed algorithms to the library. He raised the possibility that
if anyone could add to the LEDA library the consistency and faithfulness to the model
devised by Professor Mehlhorn's group would be lost. Professor Mehlhorn replied that the
library proper will be kept a closed shop. When he had spoken about others contributing to
LEDA he had meant that other people could create extension libraries to be used at the
user's own risk. The extension libraries would be created using LEDA tools so they will be
coherent in terms of look but there would be no guarantee that the extension libraries were
better or worse quality than the core LEDA library. This will help the group maintain the
considerable investment made in devising the best abstractions for the LEDA library.

Dr Bird asked if Professor Mehlhorn would redisplay the manual page. When it was
redisplayed he asked if it was not a bit terse if it was the only documentation provided with
LEDA. Professor Mehlhorn pointed out that the manual page is in reality twice as long and
the one on display was an edited version reduced in size so it could be easily shown on a
slide. Even so the group recognised the high-level nature of the documentation and were
now working on a tutorial book to accompany LEDA.

Dr Larcombe asked if runtime and compile time checking could be turned off to increase
the efficiency of LEDA routines. So a programmer could have full and expensive checking
running during the test phase, but disable checking for the distribution version. Professor
Mehlhorn replied that the more expensive checking could be disabled, and some
preconditions are not checked at all with this task left up to the programmer.

Dr Andersson said that as the LEDA algorithms are highly efficient the cost of checks are
well compensated for. In addition the structures provided by LEDA make programming a
much easier task at the expense of a slightly higher execution cost. Professor Mehlhorn
cited a case where Siemens research workers had built their own library that ran three
times faster than LEDA but at the cost of building a library that was inflexible, and made
the evolution of software very difficult.

I

·1

I

IV . 12

Dr Goldberg asked the question whether there was a conflict between the aims of
modularity and efficiency. For instance when processing a large data structure each LEDA
module would rewalk the structure for each algorithm that was applied to the structure
whereas if a custom solution was written each algorithm could be applied as the structure
was walked only once. Professor Mehlhorn agreed that this was a problem. Given this
modular algorithms should only be used when the problem can fit into main memory.
During the fall he would be setting students the task of implementing a library to handle
processing of problems that must be stored in secondary memory and he expected the
resulting library would look very different to LEDA.

Dr Andersson asked how large was LEDA's function space. Is it possible to remember all
the functions without recourse to documentation? Professor Mehlhorn stated that there are
about 50 different data types, 5 or 6 number types, 15 basic combinatorial types, and many
geometric types. Each may have multiple operations. In order to aid the user trying to
remember function names the group tried to keep function names similar i.e. insert is used
for similar methods but it is not always the case. There are on-line manual pages that
support substring searching so lessening the reliance on memory. Professor Mehlhorn
stated that he used the manual pages frequently e.g. to remember if a keyword is orient or
orientation etc. Professor Mehlhorn said that the group did have some general rules but the
size of the task means they cannot cater for every situation.

Lecture Two

A delegate asked about the graphical user interface. The delegate was concerned that
making it too 'user friendly' actually made the interface too complicated and obscured the
purpose of LEDA. He had found some 'user friendly' interfaces hard to use and was
worried he might have problems with LED A as a result. Professor Mehlhorn replied that
the user interface being presented during the demonstration was just a harness for the
LEDA library - LED A was the library routines proper. LEDA does not contain any
interface code. Professor Randell asked if the facilities used to create the demonstration
interface for LED A were available separately so that other user interface modules could be
easily constructed. Professor Mehlhorn replied that the demonstration was supplied with
LEDA, and the new LEDA book contained exercises that made use of the demonstration
software but no user interface building tools were included with the current distribution of
LEDA. His colleague on the project is looking into producing tools that would allow the
easy building of graphical user interfaces for LEDA without the need to start from scratch
every time. In response to the discussion about the use of result checker programs within
LED A a delegate asked if Professor Mehlhorn's group had carried out formal proofs for the
checker programs. Professor Mehlhorn replied that no, they hadn't done strict formal
analysis of the checker programs but the programs were based on algorithms available in
the literature which could be assumed to be correct. In addition when the programs were
written they were written in the style of 'literate programming' so the source algorithms
were closely tied to the code lessening the chance of error. To help keep checker programs
manageable they are kept very simple and so easily tested.

The same delegate raised his concern that the checker would be ineffective if it contained a
logical error so relying upon a checker program could be dangerous. Professor Mehlhorn
acknowledged that this was a possibility but as of yet it hadn't happened, and besides he
wasn't sure there was any way out of the problem that the checker itself might be wrong.

Professor Randell asked if checkers were used to check non-LEDA programs as well as
LEDA programs. Professor Mehlhorn pointed out that the problem was taking the output
of the non-LEDA programs. Other people used different data representations making it
difficult to reconcile their checkers with other people's programs.

In response to a delegate Professor Mehlhorn replied that the source code for LEDA was
available as part of the normal distribution. A delegate asked was linear algebra

IV . 13

implemented for the LEDA REAL number type. Professor Mehlhorn replied that linear
algebra could be applied, for instance Gaussian elimination but in practice because of the
semi-interpreted nature of the REAL data type the algorithm would be very slow. Dr
Andersson said that he thought checkers were a good idea but wondered if randomised
checking was needed as well as the checking of a single result. Professor Randell asked for
clarification. Dr Andersson said that his interest was not purely in random use or ordering
of use of functions but random choices of parameters or data and checking the algorithms
against these. Professor Mehlhorn agreed that this approach was a necessary one. The
problem their group had with a particular algorithm would have been detected far earlier if
the planar graphs being tested were generated randomly and checked automatically. In fact
they now do this and generate very large numbers of examples. Dr Bird asked what
operations could be done on the LED A real data type. Professor Mehlhorn replied
arithmetic operators and sign test but not for trigonometry or anything similar.

IV . 14

