























{declarations>

cas.o" CREATE:

case DELETE:

case ENTER:

{other cases>

The database operations are sent to a daemon as an event signal. The major database operations
serve as predefined events that are recognized by the ALOE kernel. In addition to these predefined
events, the implementor can also define his/her own signals and program daemons to be activated
when implementor-defined events occur. Details are found in the ALOE Action Routine Language
Manual in the GANDALF System Reference Manuals [GSRM).

Daemons are written separately with the support of the ARL environment for programming-in-the-
small. This environment is entered automatically when the implementor indicates to SMILE the wish
to write a daemon (see Fig. 3).

Program - in - the - large

SMILE

ALOEGEN ARL

Fig. 3 Transtion fram Syntax to Semantics
ARL is a tree-oriented language which operates on the data trees created in the user environment.

The syntax of ARL is similar to languages such as C and Pascal, but instead of operating on data
objects such as records and arrays, ARL operates on abstract syntax trees. Typical statements in

113



ARL modify, examine, and create nodes and subtrees. Daemons written in ARL can monitor and
examine programs being written by the user, and they also have equal status to the user in terms of
editing operations. Daemons are, therefore, a very powerful mechanism for implementing intelligent

behavior into a programming environment.

ARL is used in conjunction with an extensive library. While the ARL language is concerned with
operations and state of abstract syntax trees, the ARL library controls the state of the editor. For
example, the library contains primitives for displaying multiple windows, pop-up menus and error
messages to the user.

In the current version of the Gandalf system, the daemans written in ARL are procedural. The plan
is to replace the imperative style of ARL by a declarative language, ACL, in which the implementor
can describe Assertions and Constraints on attributes. ACL is described in G. Kaiser's thesis [GK].

7. DBGEN

While ALOEGEN and ARL describe the syntax and semantics of an environment, DBGEN is used to
parameterize the portions of the ALOE kernel that deal with user interface and other environment
issues unrelated to the abstract syntax tree. For example, DBGEN can be used to specify extended
commands. It is not uncommon that the implementor wants to extend the basic set of predefined
database operations with user commands specific for the user environment. The mail system, for
instance, could be extended with a command that gives the number of messages in a mailbox or that
selects all messages in a mailbox that originated with a particular sender. Extended commands are
written in ARL and typically make use of the ARL library. The procedure for defining extended
commands and other DBGEN extensions is explained in the tutorial on using the New Gandalf system
[NGS] and the DBGEN user's manual in the Gandalf System Reference Manuals [GSRM].

8. The ALOE Kernel

Neither user nor implementor has to know much about the ALOE kernel or about the generator
program that generates C programs and tables from the grammar descriptions. These parts play an
important role in the Gandalf system, but are invoked automatically when needed. The main parts of
the ALOE kernel are

e the command interpreter
e the database operations

e the signal propagation mechanism for daemons

114



e the unparsing scheme interpreter

e |/0 and file system access

The command interpreter is not an incremental parser, but a menu-driven template editor. Each
menu corresponds to a particular class defined as part of the implementor's grammar description.

The command interpreter accepts each piece of user input as a command and performs the
necessary operations on the database.

Concluding Remarks

The purpose of the Gandalf system is to make it easy for implementors to design, modify and

enhance programming environments. It is just a matter of a few days to generate a preliminary

version of an environment that shows the objects the user can create and provides a simple user
interface. This prototype can be demonstrated to its potential users, which gives the implementor a

chance to take the user's feedback into account. Semantics and enhancement can then be

developed incrementally over a longer period of time. The result is a flexible environment that can be

tailored to the particular wishes of its users or to the particular requirements of a project.

.
TT—



References
(JSS]

(GP82]

(GSRM]

(GK]

"Special Issue on the Gandalf Project”
The Journal of Systems and Software, 5, 2 (May 85)

Notkin, D. S. and G. E. Kaiser

"The Implementation of the Gandalf Software Development Environment"
Second Compendium of Gandalf Documentation

Department of Computer Science, Carnegie-Mellon University (May 82)

Krueger, C. W.
"The Gandalf System Reference Manuals"
Department of Computer Science, Carnegie-Mellon University (Jan 86)

Kaiser, G. E. and C. W. Krueger

"Using the New Gandalf System (a tutorial)"
Department of Computer Science, Carnegie-Mellon University (Feb 86)

116



DISCUSSION

Dr. Harrison asked, have you talked about 'tools' in general,
but does this not consist of many different sub-tools and should the
differences between them not be taken into account in the construction
of envirorments? This is not done in current systems and I feel vyou

should be more specific about this. Professor Habermann answered I
tend to agree with you. I want to de=emmhaszize the noticn

B WA SRS A b L \JJ. a L‘.OO.L

as such; I want to emphasize the task to be perfomed and regard the
tool as an implementation of the task.

11T

MET ST







