

•

all other parts, the concrete syntax among them. In the current Gandalf system, concrete syntax is

represented by strings, called unparsing schemes, written in a small representation tangu:lge that

allows the implementor to indicate punctuation and format. For instance. two alternative concrete

syntax descriptions for mail messages are

[OJ from: @1@Ndate: @2@Nsubject: @3@N@4@N

[1J subject(@1 on @2) '" @3

Each two character sequence beginning with an '@' is a formatting command . The numbers in the

unparsing scheme refer to the components in the abstract syntax definition. The symbol @N stands

for "newline" , white the identifiers and other symbols are taken literally. The first un parsing scheme

prints the entire message in full and separates the successive parts by a newline symbol. The second

unparsing scheme places an abstracted form of the message header on a single line. It uses a

procedure call format with sender and date as arguments. For instance. if Jane Smith sent a message

about terminal connections on April 10. 1986. the second un parsing scheme would display the

message as

subject (Jane Smith on 10 Apr 86) '" Terminat Connections

Further details about syntax and additional features such as synonyms and separate windows are

found in the ALOEGEN user's manual in the GANDALF System Reference Manuals [GSRMJ.

6. ARL: Language and Library
Semantics, both static and dynamic. are described in the Action Routine Language, ARL. ARL

allows the implementor to declare operations that can be attached to terminal and non ·terminal

productions. The attached operations are called Action Routines or Daemons. Attaching a daemon

to a production in ALOEGEN is accomplished by including its name in a special field in that

production. Daemons can be considered as record fields that are not direClly accessible to the user.

The concept of a daemon is something not found in traditional languages such as Pascal or Ada.

Record fields in those languages are restricted to data fields. and exc lude the possibility of declaring

procedures or functions as record fields. Daemons transform objects from passive to active data.

The ALOE kernel triggers a daemon attached to an object type whenever an object of that type is

created. modified. or visited in the user environment. The effect of executing a daemon depends on

the kind of database operation performed by the user. A daemon must. for instance, do diHerent

things when a new object is created than when one is deleted or simply visited.

A daemon is essentially a case statement that selects on the particular database operation

performed on the object to which the routine is attachtld . Its general format IS

112

[~.
. -

<declarations)

case CREATE:

case DELETE:

case ENTER:

(other casee>

The database operations are sent to a daemon as an event signal. The major database operations

serve as predefined events that are recognized by the ALOE kernel. In addition to these predefined

events. the implementor can also define his/her own signals and program daemons to be activated

when implementor·defined events occur. Details are found in the ALOE Action Routine Language

Manual in the GANDALF System Reference Manuals [GSRM).

Daemons are written separately with the support of the ARL environment for programming ·in·th.

small. ThiS environment is entered automatically when the implementor indicates to SMILE the wish

to write a daemon (see Fig. 3) .

P...,., . in • ~ •• large

SMiLe I \
ALOEGEN

Fig. J TransrtiOn I r~m Syntax ta S.manticl

ARL is a tree· oriented language which operates on the data trees created in the user environment.

The syntax of ARL is similar to languages such as C and Pascal. but instead of operating on data

objects such as records and arrays. ARL operates on abstract syntax trees. Typical statements in

113

•

ARL modify. examine. and create nodes and subtrees. Daemons written in ARL can monitor and

examine programs being written by the user. and they also have equal status to the user in terms of

editing operations. Daemons are. therefore. a very powerful mechanism for implementing intelligent

behavior into a programming environment.

ARL is used in conjunction with an extensive library. While the ARL language is concerned with

operations and state of abstract syntax trees. the ARL library controls the state of the editor. For

example. the library contains primitives for displaying multiple windows. pop·up menus and error

messages to the user.

In the current version of the Gandalf system. the daemons written in ARL are procedural. The plan

is to replace the imperative style of ARL by a declarative language. ACL. in which the implementor

can describe Assertions and Constraints on attributes. ACL is described in G. Kaiser's thesis [GK).

7 . DBGEN
While ALOEGEN and ARL describe the syntax and semantics of an environment, DBGEN is used to

parameterize the portions of the ALOE kernel that deal with user interface and other environment

issues unrelated to the abstract syntax tree. For example. DBGEN .can be used to specify extended

commands. It is not uncommon that the implementor wants to extend the basic set of predefined

database operations with user commands specific for the user envi ronment. Themail system. for

instance. could be extended with a command that gives the number of messages in a mailbox or that

selects all messages in a mailbox that originated with a particu lar sender. Extended commands are

written in ARL and typically make use of the ARL library. The procedure for defining extended

commands and other DBGEN extensions is explained in the tutoriat on using the New Gandaif system

(NGS) and the DBGEN user's manual in the Gandalf System Reference Manuals [GSRM).

8 . The ALOE Kernel
Neither user nor implementor has to know much about the ALOE kernel or about the generator

program that generates C programs and tables from the grammar descriptions. These parts play an

important role in the Gandalf system. but are invoked automatically when needed. The main parts of

the ALOE kernel are

• the command interpreter

• the database operations

• the signal propagation mechanism for daemons

114

• the un parsing scheme interpreter

• I/O and file system access

The command interpreter is not an incremental parser, but a menu·driven template editor. Each

menu corresponds to a particular class defined as part of the implementor's grammar description.

The command interpreter accepts each piece of user input as a command and performs the

necessary operations on the database.

Concluding Remarks

The purpose of the Gandalf system is to make it easy for implementors to design, modify and

enhance programming environments. It is just a matter of a lew days to generate a preliminary

version of an environment that shows the objects the user can create and provides a simple user

interface. This prototype can be demonstrated to its potential users, which gives the implementor a

chance to take the user's feedback into account. Semantics and enhancement can then be

developed incrementally over a longer period of time. The result is a flexible environment that can be

tailored to the particular wishes 01 its users or to the particular requirements of a project.

115

References

[JS5]

[GP82]

[GSRM)

[GK)

"Special Issue on Ihe Gandalf Project"
The Journal of Syslems and Software, S, 2 (May 85)

Notkin , D. S. and G. E. Kaiser
"The Implementation of Ihe Gandalf Software Development Environment"
Second Compendium of Gandalf Documentation
Department of Computer Science, Carnegie· Mellon University (May 82)

Krueger, C. W.
"The Gandalf System Reference Manuals "
Department of Computer SCience, Carnegie· Mellon University (Jan 86)

Kaiser, G. E. and C. W. Krueger
"Using the New Gandalf SySlem (a tutorial)"
Department of Computer Science, Carnegie· Mellon University (Feb 86)

116

DISOJSSICN

Dr . Harrison asked, have you talked about 'tools ' in general,
but does this not consist of many different sub-tools and should the
differences between them not be taken into account in the construction
of enviroments? This is not done in =rent systems and I feel you
soould be rrore specific about this. Professor Habermann answered, I
tend to agree with you. I wan do~~~i.:.Q ~~:: :-:~~.:..~~ (if a. cool
c\s sucn; I want to errphasize the task to be perforrred. and regard the
tool as an ilr;llerrentation of the task.

117

• • • •

