

Consistency applied for its own sake can easily lead to rules that are either too restrictive or too
powerful for general human use. During the design process, I found that simple rules for REXX
syntax quite often had to be rethought to make the language a more usable tool.

Originally, REXX allowed almost all options on instructions to be variable (and even the names of
functions were variable), but many users fell into the pitfalls that were the side-effccts of this pow­
erful generality. For «ample, the TRACE instruction allows its options to be abbreviated to a
single letter (as it needs to be typed often during debugging sessions). Users therefore often used
the instruction 'TRACE I" , but when "I" had been used a.s a variable (perhaps as a loop counter)
then this instruction could become "TRACE 10" - a correct but unexpected action. The TRACE
instruction was therefore changed to treat the symbol as a constant (and the language became more
complex as a consequence) to protect users against such happenings. A VALUE option on TRACE
allows variability for the experienced user. There is a fine line to tread between concise (terse)
syntax and usability.

Be adaptable

Wherever possible the language allows for extension of instructions and other language constructs.
For example, there is a large set of characters available for future extensions, since orily a restricted
set is allowed for the names of variables (symbols). Similarly, the rules for keyword recognition
allow instructions to be added whenever required without compromising the integrity of existing
programs that are written in the appropriate style. There are no globally reserved words (though a
few are reserved within the local context of a single clause).

A language needs to be adaptable because it certainly will be used for applications not foreseen by the
designer. Although proven effective as a command programming and personal language. REXX
may (indeed. probably will) prove inadequate in certain future applications. Room for expansion
and change is included to make the language more adaptable.

Keep the language small

Every suggested addition to the language was considered only if it would be of use to a significant
number of users. My intention has been to keep the language as small as possible. so that users can
rapidly grasp most of the language. This means that:

• The language appears less formidable to the new user.

• Documentati on is smaller and simpler.

• The experienced user can be aware of all the abiliti es of the language. and so has the whole tool
at his disposal to achieve results.

• There are few exceptions. special cases. or rarely used embellishments.

• The language is eaSier to implement.

No defined size or shape limits

The language does not Jefine limits on the size or share of' any of' it s tokens or Jata (although there
may be implementation restri cti ons), It does. however. �d�~�l�i�n�e� the minimum requirements that must
be satisfied by an implementation. Wherever an implementation restriction has to be applied. it is
recommended that it should be of such a magnit uJe that rew (if any) users will be affected.

Where implementation limits are necessary. the language encourages the implementer to use familiar
and memorable values fo r the l im its. For example 250 is preferred to 255. 500 to 512. and so on.
There is no longer any excuse for forcing the artifacts of thl.! binary system onto a population that
uses only the decimal system. Only a tin y minori ty of futu re programmers will need to deal with
�b�a �s�e �·�t�y�.�. �~�\ �·�J �e �r�i �v�e �d� number systems.

80

,. ,. ,.

History and Design Principles

The REXX language (originally called "REX") borrows from many earlier languages; PL/I, Algol, and
even APL have had their influences, as have several unpublished languages that I developed during the
1970's. REXX itself was designed as a personal project in about four thousand hours during the years
1979 through 1982, at the IBM UK Laboratories near Winchester (England) and at the IBM
T. 1. Watson Research Center in New York: (USA). As might be expected REXX has an international
flavour , with roots in both the European and North American. programming cultures.

There are several experimental implementations of the REXX language within IBM, for both large and
small machines. My own System/370 impiementation has become a part of the Virtual Machine/System
Product, as the System Product Interpreter for the Conversational Monitor System (CMS). This imple­
mentation of the language is described in the Reference Manual for that product.' A different IBM im­
plementation, written in C, provides a subset of the language as part of the IBM PC{VM Bond product,
running on various models of the IBM Personal Computer.

The design process for REXX began in a conventional manner. The REXX language was first designed
and documented; this initial informal specification was then circulated to a number of appropriate re­
viewers. The revised initial description then became the basis for the first specification and implemen­
tation .

From then on, other less common design principles were followed. strongly influenced by the develop­
ment environment. The most significant was the intense use of a communications network, but all three
items in this list have had a considerable influence on the evolution of REXX.

Communications

Once an initial implementation was complete. the most important factor in the development of
REXX began to take effect. IBM has an internal network. known as VNET, that now links over
2200 main-frame computers in 53 countries. REXX rapidly spread throughout this network, so from
the start many hundreds of people were using the language . All the users. from temporary staff to
professional programmers. were able to provide immediate feedback to the designer on their pref­
erences, needs, and suggestions for changes. (A t times it seemed as though most of them did - at
peak periods I was replying to an average of 350 pieces of electronic mail each day .)

An informal language commi ttee soon appeared spon taneously. communicating entirely electron­
ically , and the language discussions grew to be hundreds of thousands of lines .

On occasions it became clear as time passed that incompatible changes to the language were needed .
Here the network was both a hindrance and a help. It was a hindrance as its size meant that REXX
was enjoying very wide usage and hence many people had a heavy investment in existing programs.
It was a help because it was possible to communicate directly with the users to explain why the
change was necessary, and to provide aids to help and persuade people to change to the new version
of the language . The decision to make an incompatible change was never taken lightly. but because
changes could be made relatively easily the language was able to evolve much furthe r than would
have been the case ir o nl y upwards compatible extensio ns we re <.:ons idered .

\ IBM Virtual MachinelSyatem Product: System Product Interpreter Reference . IBM Rdt' ft:f1Cf' Manllul, O rde r
:-'0. SC24·5239. IBM (In3).

81

..

Documentation before Implementation

Every major section of the REXX language was documented (and circulated for review) before im­
plementation. The documentation was not in the form of a functional specification, but was instead
complete reference documentation that in due course became part of this language definition. At
the same time (before implementation) sample programs were written to explore the usability of any
proposed new feature. This approach resulted in the following benefits:

• The majority of usability problems were discovered before they became embedded in the lan-
guage and before any implementation included them. •

• Writing the documentation was found to be the most efTective way of spotting inconsistencies,
ambiguities, or incompleteness in a design. (But the documentation must itself be complete, to
"final draft" standard.)

• I deliberately did not consider the implementation details until the documentation was com­
plete. Tills minimized the implementation's influence upon the language.

• Reference documentation written after implementation is likely to be inaccurate or incomplete.
since at that stage the author will know the implementation too well to write an objective de­
scription .

The language uaer la uauBlly right

User feedback was fundamental to the process of evolution of the REXX language. Although users
can be unwise in their suggestions, even those suggestions wlllch appeared to be shallow were con­
sidered carefully since they often acted as pointers to deficiencies in the language or documentation.
The language has often been tuned to meet user expectations; some of the desirable quirks "f the
language are a direct result of tills necessary tuning. Much would have remained unimproved if
users had had to go though a formal suggestions procedure. rather than j ust sending a piece of
electronic mail directly to me . All of this mail was reviewed some time after the initial corre­
spondence in an efTort to perceive trends and generalities that might not have been apparent on a
day-to-day basis.

Many (if not most) of the good ideas embodied in the language came directly or indirectly from
suggestions made by users. It is impossible to overestimate the value of the direct feedback from
users that was available while REXX was being designed,

Conclusions

A vital part of the environment provided to programmers is the programming language itself. Most of
our programming languages have, for various Illstorical reasons. been designed for the benefit of the
target maclllnes and compilers rather than for the benefit of people . As a result they are more demanding
of the programmer than they need be, and this often leads to errors.

REXX is an attempt to red ress tills balance; it is desi gned specifically to provide a comfortable pro­
gramming environment. If the user - the programmer - finds it easy to program. then fewer mistakes
and errors are made.

Inevitably I have made compromises in five yea rs of design work 0n REXX , Despite thi s. I believe that
the la nguage has achieved its objective and truly makes prog ramming easier. I ,liso believe (a nd hope)
tha t future languages will improve on it - REXX is just a start in the direction of languages designed
for people rather ,than for computers.

82

DISCUSSION

Professor Habermann queried the view that "Simple is beautiful"
when applied to language; natural human languages provide many and
varied ways of expressing the same ideas. However, this does not
imply the opposite view that "Complex is beautiful", and he would
prefer the goal of Consistency as a guide. It was a good idea to put
expressive conoepts into basic components such as expressions, atc.

In reply, the speaker suggested that the real answer was that the
equivalent in REXX of the elementary 'tokens' of natural written
languages (i.e. letters) were its basic components (e.g. those used
in forming expressions); the expressiveness came also from the rich
set of functions provided.

Dr. Larcombe asked if it were possible to change or expand the
syntax of the language, to which Mr. Cowlishaw responded that this
was indeed possible in the original version of the language, but not"
in later versions. He was thinking of re-introducing the ability to
make controlled extensions to the syntax (but not semantics). Another
questioner said that if asked to make a c hoice, he would select LISP
as a base language f or extension, as it had almost no syntax to speak
of l Mr. Cowlishaw replied that he was more concerned to make the
language accessible to large numbers of people; attempts to spread the
concepts of LISP to such an audience (as for example with LOGO) had
not been very successful, he fel t . There were certainly more powerful
languages, but in his view REXX was better in achieving the objectives
he had set out.

In response to a query about the user market for REXX, the
speaker commented that it appeared to matched the needs of a number of
different groups; it was apparently very popular at SLAC (St anford
Linear Accelerator Centre), f or example. It was not a large system:
the IBMl370 version occupied 351< (pl us an exte rnal function library),
and a recent PC version implemented in C used 69K (including all the
error messages I) •

Professor Randell asked the speaker whether there had been any
interaction between the "REXX community" and t hat of IBM's Federal
Systems Division, with their very formal approaches to programming?
Mr. Cowlis~aw admitted that he was not familiar with FSD , but another
speaker commented that their style and use ~f formal specification
languages had not been widely adopted by othe r IBM divisions.

83

,. ,.

F

I

l

