

153

language forced processes to run at the same speed as for example
slow peripherals. Similarly 1t did nothing to prevent processes
holding on to scarce resources. Professor Hoare replied that these
problems could not be solved through programming language design.

However, they may be alleviated by constructing programs that use
explicit buffering.

Now consider a guard with a boolean condition followed by
an input command.

[incount £ outcount+n; producer?c— . . . A. . .
floutcount > incount; consumer?request—+ . . . B.

]

This is similar to the previous example except that if
incount is greater than outcount+n then the first alternative cannot
be selected and input is not accepted from producer. If outcount
is 1less than or equal to incount the second alternative cannot be
selected and input is not accepted from consumer.

Bounded buffer

We again consider a simple exercifse. Write a process
which inputs portions from a producer and outputs them to a consumer
interposing a buffer of up to N portions to smooth variations in the
speed of production and consumption. This specification 1is
fulfilled by the following program.

buffer:array of N portions; incount, outcount:integer;

p:portion;

incount:=0;

outcount:=0;

comment Ofoutcount{incount{outcount+N;

* [incount<outcount+N;producer?p-*
buffer(incount mod N):= p;
incount:= incount+1

Joutcount<incount;consumer?request —»
consumer!buffer(outcount mod N);
outcount:= outcount+1) Then s

]

Local storage for up to N portions is provided by 'buffer'
while 'p' is working storage for the input portions. 'Incount' and
'outcount' Kkeep track of the number of portions input from the
producer and output to the consumer respectively. Acceptance of
input from producer will cause incount to be incremented. This
must never exceed outcount by more than the N portions of the
buffer. This is ensured by the guard preceding the input command.
Similarly outcount 1is incremented each time a portion is output to
consumer. This must never exceed incount, which is checked before

any request for output from consumer is accepted.
Arrays of processes

It 1is wuseful to be able to specify a number of similar
processes, and for this we introduce the notation.

N
1D1 name(i)::<command>

154

This specifies an array consisting of N processes, all
executing the same command. The bound variable i ranges between 1
and N and may be accessed (but not assigned) within the command to
indicate the process number. Each process is identical except for
the value in its own copy of i. Specific processes are denoted by
a subscripted name <name>(j), where j must lie between 1 and N. As
an example of an array of processes reconsider the bounded buffer
problem using the following solution.

[X[0)::. . . producer.
N
|| m X[i] :: p:portion *[X[i~17? p»X[i+1] ! p]
i=1

|| X[N+11::. . . consumer.

]

The producer and consumer processes are given the names
X[0] and X[N+1] respectively. The array of processes X[1] to X[N]
each have a local variable p which holds a single portion. The ith
process inputs a portion from process X[i-1] and outputs it to
X[i+1], thus passing portions through the array from producer to
consumer. This is illustrated in figure 4.

X[0]:: | X(11e: |—p| X[2): f—p ., .. —» X[N):: |—p X[N+1 s s
producer consumer

Figure 4

We finally consider a more substantial problem. A square matrix A
of order 3 1is given. Three streams are to be input representing
three columns of a matrix IN. Three streams are %to be output
representing the columns of the product matrix IN¥A. After an
initial delay the results are to be output at the same rate as the
input is consumed.

To achieve the desired speed nine multiplications must be
performed simultaneously. This requires nine separate processes
together with some other processes handling boundary conditions as
illustrated by figure 5.

Let the current values of the input streams be x,y and =z.
These values are generated by the processes on the 'western' border
of figure 5. The 'northern' border is a generator of zero's. An
x from the west first enters M[1,1] where it is multiplied by
A;1 and added to the zero input from the north. This partial sum
is passed south to M[2,1] to have y¥A;;, added and so on. Meanwhile
the value of x 1is passed east to M[1,2] to form the partial sum
x¥Ai2 and so on. The eastern border acts as a sink for the input
streams. Provided the 1input is allowed to be consumed slightly
skew the final result appears at the southern border.

155

M[0,1] M[0,2] M[0,3]
0 0
M[1,0] F—=—8 M[1,1] M[1,3] = u[1,4]
Aax Aa
M[2,0] [®Im[2,1] [P mM2,2] [P M[2,3] ——» M[244]
Ayaxthsqy Ay oxthzay MAaxtAzzy
M[3,0] M[3,1] SRR o F e M[344]
Ay1xtAz1y+hza2 Ay2XtAsaytAsaZ A1z xtAs3y+Asaz
M[441] M[452] M[443] N
W E
s

Figure 5

156
The following program is a realisation of such a scheme.
3
[I M[1,0]::. « . sources of X%,y and z

3
”J__ﬂl M[O,jl:: * [true-»M[1,j]!0]

”131'1 M[i,4]::x:real; * [M[i,3]?x - skip]
IIJiT1 Mi4,31::. . . sinkes for results . . .
3
[1£1 Jﬁ; M[i,j)::x:real;

¥ [MIi,j-112x —»
~ M[i,j+1]!x;sum:real;
M{i-1,J]1%sum;
MLi+1,3]V(A[L,j] ¥*x+sum)
]

The first line is the western border, the source of the
input streams, while the second line is the northern border, the
source of zero's. The next line is a sink for the 1input streams
and 1is followed by the southern border, a sink for results.
Finally a two dimensional array of processes perform the
multiplication of the matrices. Each process of the array inputs a
value x from the west and immediately outputs it to the east. It
then adds to the partial sum input from the north the product of x
and A . This sum is output to the south.

Reference
E. W. Dijkstra. "Guarded commands, Nondeterminacy and

formal Derivation of Programs", CACM 18, 8 (1975).
pp. U453-457.

