
152

PACK = lineimage:array of 125 charactersj
c:characterj
colno:integerjcolno:=Oj
* [Y?c -to lineimage(colno): =Cj

[colno< 124 -. colno: =colno+ 1

]
] j

colno= 124 -. lineprinter! lineimage j
colno:=o

comment space fill and output last linej

There should be little difficulty in understanding either of the
programs.

Now consider the problem of how to increase the efficiency
of waiting. It is not possible to reduce the time spent waiting
for a single event. However by waiting for two events
simultaneously twice as much useful waiting is performed in the same
amount of time. Provided that such events are r andom this is
supported by statistical theory. This alone is the reason for the
use of non-determinism in parallel programs.

Consider an alternative command with input commands in
more than a single guard.

[producer?c A.
consumer?request -+ ... B.

U

In the successful execution of this command either (when
the producer is ready) input " c" from it and do A or (when the
consumer is ready) input "request" from it and do B. Now it is the
intention of the programmer that the choice between those two
alternatives shall not be made at random or arbitrarily. The
implementation should select whichever of these two alternatives can
be executed the earliest, while the other is omitted.

Of course a programming language cannot specify the
relative speed of execution of such processes and such an intention
cannot feature in the definition of the language. However a good
implementation should not delay unreasonably in performing some
action once it becomes possible to do so. Such specification is
not even possible in strictly sequential languages such as ALGOL , 60.
The ALGOL 60 report does not specify that an implementation may not
wait at a semi-colon for an arbitrarily long time before executing
the next statement. Any implementation that did would not be
popular with its users.

ensure
Hoare
answer

Professor
that all the
acknowledged
the questi on.

Michaelson asked if any arrangements
processes were eventually executed.
the importance of the problem but

are made to
Professor

declined to

Professor Van der Poel remarked upon the similarity of the
system to that of computers--waiting for interrupts. Professor
Hoare noted that this similarity was intentional.

Dr. Treleaven suggested that the model presented by the

f

•

, ,

15 3

lan guag e for c ed pr oce sse s t o run at the same s peed as for e xampl e
slow peripherals. Similarly it did nothing to prevent pr oc esses
holding on t o s c ar c e reso urces . Professor Hoare replied that these
problems could not be so lved thr ough programming language design.
However, they may be a lleviat ed by constructing programs that use
explicit buffering.

Now c onsid e r a guard with a boolean condition foll o wed by
an input c ommand.

[in co un t ~ outco unt+n i producer? c - . .
Uo utco un t > i ncounti con s umer?request-.
]

A •••
.. B.

This is simi lar to the previous example except that if
incount is g r ea ter th a n outc ount+n then the first alternative cannot
be selected and inpu t i s no t acc e pt ed from pr oducer. If outcount
is less t ha n or equa l t o incoun t the se con d aLternative cannot be
selected and input is not accepted from consumer.

Bounded buffer

. We again consider a simple exerc~~e. Write a process
which inpMts porti ons from a producer and o4tputs them to a consumer
interposing a buffer o f up to N portions to ·smooth variations in the
speed of producti on and consumption. This specification is
fulfilled by the foll owing program.

buffer:array of N portionsi incount, outcount:integeri
p:portioni
incount:=Oi
outcount:=Oi
c omment O~outcount~incount~outcount+Ni
* [incount<outcount+Niproducer?p-

buffer(incount mod N):= Pi
incount:= incount+1

Uoutcount<incounticonsumer?request-+.
consumer!buffer(outcount mod N)i
outcount:= outcount+1

]

Local storage for up to N portions is provided by 'buffer'
while 'p' is working storage for the input portions. 'Incount' and
'outcount' ~eep track of the number of portions input from the
producer and output to the consumer respectively. Acceptance of
input from producer will cause incount to be incremented. This
must never exceed outcount by more tha~ the N portions of the
buffer . This is ensured by the guard preceding the input command.
Similarly dutcount is incremented each time a portion is output to
consumer. This must never exceed incount, which is checked before
any request ' for output from consumer is accepted.

Arrays o f pr ocesses

It is useful to be able to specify a number of similar
processes, and for this we introduce the notation.

" 11 name(i) : : <command> 1- ,

154

This specifies an array consisting of N processes, all
executing the same command. The bound variable i r anges betwee n 1
and N and ma y be acc essed (but not ass i gned) within the command to
indicate the process number. Each process is identi ca l ex cept for
the value in it s own copy of i. Specific processes are denoted by
a su bscripted name <name> (j), where j mu st lie betwee n 1 and N. As
an example of an array o f processes reconsider the bounded buffer
problem usin g the follow i ng so luti on.

[X[O)::. produ cer; . .

N II IT XCi J :: p :portion ~[X[i-1 J? p-+X[i+1 J : p J
1 = 1

IIX[N+1)::.
)

. con sumer. . .

The producer and consumer processes are given the name s
X[O) and X[N+1) respectively. Th e a rr ay of pr ocesses X[1) to X[N)
each h ave a local va ri able p which holds a si ngle portion. The ith
process input s a portion from process X[i-1) and outputs it t o
X[i+1), thu s passing portions through the array from pr oducer t o
co n s umer. This is illustra t ed in figure 4 .

X[O J: : X[1]: : X[2 J:: ~

producer
~ . • • • • -- X[N]: : X[N+1 J::

consumer

Figure 4

We finally cons ider a more substantial problem. A square matri x A
of order 3 is given . Three streams are to be input repre senting
three columns o f a matrix IN. Thre e streams a r e to be output
representing th e columns of the product matrix IN*A. After a n
initial delay the results are to be outp ut at the same rate as t he
input is consumed.

To ach ieve the desired speed nine multiplications must be
performed s imultaneously. This require s nine separate processes
together with so me other processes handli ng boundary conditions as
illustrated by figure 5.

Let the cu rr ent va lues o f t he input st r eams be x,y a nd z.
These values a re generated by the processes on the 'western ' border
of figure 5. The 'no rthern' border is a gene r a t o r of zero ' s. An
x from the west f i r st enters M[1,1) where it is multiplied by
A" and added to ' the zero input from the north. This partial sum
is passed south to M[2, 1) t o have y*A2l added and so on , Meanwhil e
the value o f x is passed east to M[1,2) to form th e partial sum
X*A

'
2 and so on. The eastern border ac ts as a sink for the input

st reams. Provided the input is a llo wed to be consumed slightly
skew the fin a l result appears at the southern bo rder.

155

M[O, 1] M[0,2] M[O, 3]

0 0 0
,It ,

M[1,0] x M[1,1] x - M[1, 2] x ... M[1, 3]
y

M[1,4]

A~lX Al a X A13

11, , ,~

Y • Y ... Y Y --M[2,O] M[2,1] M[2, 2] M[2,3] M[2, 4]

All x+AalY Al aX+AaaY A13 X+Aa3Y

,It ,
z z - z • z ...

M[3,O] • M[3,1] --... M[3,2] • M[3, 3] M[3,4]

All x+Aa ly+A31 z Al a x+Aa a Y+Aa a z Al3 X+Aa3 Y+Aa 3 Z

r

M[4,1] ~ M[4, 3] N
j,.

-
i,---I---E

s

Figure 5

· '

156

The following pr ogram is a realisat ion of such a scheme .
3

[IT M[i,O]:: ... sou r ces of x,y and z .
1 = 1

3

II IT
3=1

II 'fr
1 =1

3

II 3 LT,
~ 'fr

1 = 1 J =1
II

]

M[O,j]: : ~ [true-+M[1 , j] !O]

M[i,ll]: :x:real ; ~ [M[i , 3]?x -+ skip]

M[4,j]:: . .. sinks for r esults ..

M [i , j] : : x : rea 1 ;

* [M [i ,j-1]?x

]

M[i , j +1]!x;sum:real;
tH i -1, j] ? sum;
IHi +1,j] ! (A[i,j] * x+sum)

The first l ine is the weste r n border, the source of the
input streams, while the second line is the northern border, the
sou rce o f zero ' s . The next line is a sink for the input streams
and is followed by t he southern border, a s ink for results.
Finally a two dimen sio nal array of pr ocesses perform the
multipli ca tion of the ma trices . Each process of the array inputs a
value x from the west and immedi ate ly outputs it to the east. It
then adds to the parti al sum inpu t from the north the product of x
and A This sum i s output to t he south.

Referen ce

E. W. Di jkstra . "Gu arded commands, Nondete rminacy and
formal Derivation of Prog rams", CACM 18, 8 (1975).
pp. 45 3- 457.

