
Dr . Moore: Historically great control, but clients increasingly
want total control. Often I have only to give the information that
allows a particular theorem to be proved, given the program and the
specification.

Professor Rogers: What is the largest program you have proved?

Dr. Hoore: This depends on who is using it. It also depends on
which point you start from , 1. e. from axi oms or from scratch. The
largest program is five pages of dense FORTRAN. It has also been used
to prove the security of the kernal of an operating system. That code
is about one thousand lines long.

Hr. Grossman: Is it possible to handle asynchronous programs
with interrupts?

Dr. Moore: There are people looking at this. I don't really
know what the answer i s, I'm more interested in mechanical theorem
proving. It is fr ontier work to formalise it at all; modal and
temporal logic come in all the time.

Dr. Larcombe: Can a theorem prover prove itself correct?

Dr. Hoore: No, in a certain sense. If a man says he always
tells the truth, what do you think? What do you think if he says he
never tells the truth?

The following proof is conceivable however. Implement a simple
theorem prover and then extend it . The extended system may be proved
using the simple one, and the process is repeated until the desired
theorem prover is produced. The simple system is about a page long
and so could be proved by getting say ten mathematicians to agree it
was correct.

Professor Randell: Has the theorem prover seen much use
outside SRI?

Dr. Moore: Both Ford Aerospace and Honeywell use it. I don't
know how to quantify success, but there is a lot of interest. A
certain amount of skill is needed to use the theorem prover, so we
have run courses to teach people what i s necessary. A naive user
would fail to get a solution from the system where I could succeed,
because I would be able to reformulate a lemma.

Professor Randell: The most useful thing the system could say
when it fails to find a proof is why.

Dr. Moore: When the theorem prover fails it stops with the
formula that failed. One can then construct a counter-example from
which it is possible to generate the input data which causes the
program to fail.

86

Professor Katzenelson: Does the verification depend on the
size of the program?

Dr. Moore: Program verification is very dependent on the
size of the program. It is difficult to specify large programs and
the equations you get out are very large.

87

References

1. American National Standards Institute, Inc., American
National Standard Programming Language FORTRAN, ANSI
X3.9-1978, 14 30 Broadway, New York, New York 10018, April 3,
1978.

2. W.W. Bledsoe, "Splitting and Reduction Heuristics in
Automatic Theorem- proving", Artificial Intelligence, 3, pp.
27 -60 (1 972) •

3. W.W . Bledsoe, R.S. Boyer and W.H. Henneman, "Computer Proofs
of Limit Theorems", Artie Intell., 3 (1972) pp. 27-60.

4. W.W. Bledsoe, "A New Method for Proving Certain Presburger
Formulas", Advance Papers, 4th Int. Joint Conf. on Artif.
Intell., Tbilisi, Georgia, U.S.S . R. pp . 15-21, (September
1975) •

5. R.S. Boyer, J.S. Moore and R.E. Shostak, "Primitive Recursive
Program Transformation", Proc. Third ACM Symposium on the
Principles of Programming Languages", pp. 171-174, Atlanta,
Georgia, ACM, New York, New York (1976).

6. R.S. Boyer and J.S. Moore, "A Fast String Searching
Algorithm", Commun. Assoc. Comput. Mach., 20(10), pp. 762-772
(1977) •

7. R.S. Boyer and J.S. Moore, A Computational Logic, Academic
Press, New York, (1979).

8. R.S. Boyer and J .S. Moore, "Metafunctions: Proving Them
Correct and Using Them Efficiently as New Proof Procedures",
in The Correctness Problem in Computer Science (eds. R.S.
Boyer and J.S. Moore) Academic Press, London (to appear,
1981) •

9. R.S. Boyer and J.S. Moore, "A Verification Condition
Generator for FORTRAN", in The Correctness Problem in
Computer Science (eds. R.S. Boyer and J.S. Moore) Academic
Press, London (to appear, 1981).

10. C. Chang and R.C.T. Lee, Symbolic Logic and Mechanical
Theorem Proving, Academic Press (1973).

11. A. Church, Introduction to Mathematical Logic, Vol. I,
Princeton, Princeton University Press (1956).

12. A. Colmerauer, H. Kanoui, R. Pasero and P. Roussel, "Un
Systeme de Communication Homme-Machine en Francais", Groupe
de Researche en Intelligence Artificielle, Universite
d'Aix-Marseille, Luminy (1972)

88

13. E. Feigenbaum and J. Feldman, Computers and Thought,
McGraw-Hill Book Company, New York, (1963).

14. R. Floyd, "Assigning Meanings to Programs", Mathematical
Aspects of Computer Science, Proc. Symp. Appl. Math., Vol.
XIX, pp. 19-32, American Mathematical Society, Providence,
Rhode Island (1967).

15. P.Y. Gloess, "An Experiment with the Boyer - Moore Theorem
Prover: a Proof of the Correctness of a Simple Pars er of
Expressions", Proc. 5th Conf. on Automated Deduction,
Lecture Notes in Computer Science, Vol. 87, pp. 154-169,
Springer-Verlag (1980).

16. M. Gordon, R. Milner and C. Wadsworth, "Edinburgh LCF",
Computer Science Department, Edinburgh University, CSR-11-77,
(1977) •

17. M. Gordon, The Denotational Description of Programming
Languages, Springer-Verlag, New York, New York (1979).

18. C. Hoare, "An Axiomatic Basis for Computer Programming",
Commun. Assoc. Comput. Mach., 12(10), pp. 576-583 (1969).

19. G. Huet and D.C. Oppen, "Equations and Rewrite Rules, A
Survey", CSL Technical Report, SRI International, Menlo Park,
Ca. U.S.A.

20. L.S. Jutting, "Checking Landau's 'Grundlagen' in the AUTOMATH
System", Ph.D. Thesis, Eindhoven University of Technology
(1976).

21. R. Kowalski, "Predicate Calculus as a Programming Language",
Information Processing 74, North-Holland Publishing (1974).

22. R. Kowalski, "A Proof Procedure Using Connection Graphs", J.
Assoc. Comput. Mach., 22, pp. 572-595 (1975).

23. S. Litvintchouk and V. Pratt, "A Proof-Checker for Dynamic
Logic", proceedings of the Fifth Int. Joint Conf. on Artif.
Intell., Computer Science Department, Carnegie-Mellon
University, Pittsburgh, Pennsylvania, U.S.A. (1977).

24. D.W. Loveland, Automated Theorem Proving: A Logical Basis,
North Holland Publishing Co. (1978)

25. J. McCarthy, "Recursive Functions of Symbolic Expressions and
Their Computation by Machine", Commun. Assoc. Comput. Mach.,
3 (4), pp. 184 -1 95 (1 960) •

89

26. J.S. Moore, "A Mechanical Proof of the Termination of
Takeuchi's Function", Information Processing Letters, Vol. 9,
No.4, pp. 176-181 (1979).

27. J .S. Moore, "Introducing Iteration into the Pure LISP Theorem
Prover", IEEE Trans. Software Eng. 1(3), pp. 328-338 (1975).

28. J. Moses, "Algebraic Simplification: A Guide for the
Perplexed" , Proc. 2nd ACM Symposium on Symbolic and Algebraic
Manipulation, (ed. S.R. Petrick) (1971).

29. D. Oppen, "Reasoning about Recursively Defined Data
Structures", CS Report STAN-CS-78-678, Stanford University
(1978).

30. J.A. Rob inson, "A Machine Oriented Logic Based on the
Resolution Principle", J. Assoc. Compt. Mach. 12, pp. 23-41
(January, 1965).

31. J.A. Robinson, Logic: Form and Function, North Holland
Publishing Company, New York (1979).

32. P. Roussel, "PROLOG: Manuel de reference et d' utilisation",
Groupe de Researche en Intelligence Artificialle, Universite
d'Aix-Marseille, Luminy (1975).

33. R. Shostak, "Deciding Linear Inequalities by Computing Loop
Residues" , CSL Technical Report, SRI International, Menlo
Park, Ca. U.S.A. (1978) .

34. T. Skolem, "On Mathematical Logic", in From Frege to Goedel,
(ed. J. van Heijenoort) Harvard Univ . Press, Cambridge,
Massachusetts (1967).

35. United States of America Standards Institute, USA Standard
FORTRAN, USAS X3.9-1966, 10 Eash 40th Street, New York, New
York 10016 , March 7, 1966.

36. H. Wang, "Towards Mechanical Mathematics", IBM J. Res.
Develop . 4, pp. 2-22 (January 1960) .

37. D. Warren, "Implementing PROLOG, a Language for Programming
in Logic", Department of Artificial Intelligence, Uni versi ty
of Edinburgh (1976).

38. R • W. Weyhrauch, "A User's Manual for FOL", Computer Science
Department, Stanford University, STAN-CS-77-432 (1977).

90

