
Dr . Moore: Historically great control, but clients increasingly 
want total control. Often I have only to give the information that 
allows a particular theorem to be proved, given the program and the 
specification. 

Professor Rogers: What is the largest program you have proved? 

Dr. Hoore: This depends on who is using it. It also depends on 
which point you start from , 1. e. from axi oms or from scratch. The 
largest program is five pages of dense FORTRAN. It has also been used 
to prove the security of the kernal of an operating system. That code 
is about one thousand lines long. 

Hr. Grossman: Is it possible to handle asynchronous programs 
with interrupts? 

Dr. Moore: There are people looking at this. I don't really 
know what the answer i s, I'm more interested in mechanical theorem 
proving. It is fr ontier work to formalise it at all; modal and 
temporal logic come in all the time. 

Dr. Larcombe: Can a theorem prover prove itself correct? 

Dr. Hoore: No, in a certain sense. If a man says he always 
tells the truth, what do you think? What do you think if he says he 
never tells the truth? 

The following proof is conceivable however. Implement a simple 
theorem prover and then extend it . The extended system may be proved 
using the simple one, and the process is repeated until the desired 
theorem prover is produced. The simple system is about a page long 
and so could be proved by getting say ten mathematicians to agree it 
was correct. 

Professor Randell: Has the theorem prover seen much use 
outside SRI? 

Dr. Moore: Both Ford Aerospace and Honeywell use it. I don't 
know how to quantify success, but there is a lot of interest. A 
certain amount of skill is needed to use the theorem prover, so we 
have run courses to teach people what i s necessary. A naive user 
would fail to get a solution from the system where I could succeed, 
because I would be able to reformulate a lemma. 

Professor Randell: The most useful thing the system could say 
when it fails to find a proof is why. 

Dr. Moore: When the theorem prover fails it stops with the 
formula that failed. One can then construct a counter-example from 
which it is possible to generate the input data which causes the 
program to fail. 
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Professor Katzenelson: Does the verification depend on the 
size of the program? 

Dr. Moore: Program verification is very dependent on the 
size of the program. It is difficult to specify large programs and 
the equations you get out are very large. 
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