

Extending a programming language by the intrinsic structuring
method of a data base model provides, of course, -the most intimate
interface between programs and data bases: relation variables from
programs and data bases now can be used intermixed in element
selections, relation expressions, and in statements.

A final example will demonstrate that the relation update operators ,
: +, : &, : - , introduced in section 5.2 are just shorthand notations of
ordinary assignment statements.

An insert statement, for example,

reI 1 :+ re12;

is equivalent to the assignment statement

re11 := [each r 1 in re11 : true,
e;;:cli r2 in re12 : all r1 i n re11 (r1.key <> r2.keyJ.]; - - ---

In this example, a relation expression is given by a list of
selections (for the full syntax, see appendix); the first list
element consists of all the relation elements of reI 1 , the second
list element is a selection of those elements of re12 that have key
values different to those in rell. This intimate interface between
programs and data bases allows, for example, that the data base
components can even be used as parameters in procedures and
functions. If the procedure concept has the appropriate parameter
mechanisms 'transaction procedures' may be formed that can be treated
as units of operation even if several of them are executed in
parallel on the same data base.

8. Summary and Concluding Remarks

The paper addresses two topics. At first it defines data base
models in terms of programming language concepts. Type generators
(data base models) are used to write specifications (data base
s chemata) that define how data are structured and identified,
manipulated and constrained. Expression (data base queries) are
formed out of operands (data base components) and operators and
denote rules for obtaining results. Statements (data base actions and
transactions) denote operations that may modify their operands when
being executed. Furthermore, the paper discusses some of the mutual
requirements to be met by programming languages and data bas e model s
so that operands from both sources can be mixed within statements.
The example given by the programming language Pascal and the
relational data base model shows that, depending on the selection
mechanism defined for relations, interfacing needs either no
modification of the language at all 01' it requires the generalisation
of an existing control str ucture 01' the introduction of a new data
structure.

117

Neither the conventional approach for an interface based on a
third component (user working area) which is mainly defined by a dat a
structure mediating between programs and data bases nor the more
advanced idea of extending a data base model by a control structure
are discussed in this paper. Also, new concepts for data definitions,
for example, user-defined type generators as in Euclid, Modula, or
Ada (cluster, module, or package) are not exploited.

A Pascal system extended by relations and relational data bases
(Pascal/R, see appendix) is implemented on a DECsystem/10.

Discussion

Professor van de Riet asked why, in Pascal/R, relations were
taken as a generalisation of the set type rather than the file type,
and also since relations are collections of records and Pascal allows
pointers to records, why were there no pointers to tuples in
relations? Professor Schmidt replied that they had started with the
set type because it provided a mechanism already present in Pascal
for the non-procedural generation of a collection of elements. Work
had been done on attempting to integrate the notion of reference with
that of relation - he recalled a paper from University of Toronto
CSRG of a couple of years back - the techniques were similar to those
used in Euclid: a reference had to be bound not merely to a type but
to a variable.

Dr. Atkinson asked why, since they had i ntrod uced a new data
type, had they not also introduced new operators for that type - for
example the algebraic operat·ors. Professor Schmidt replied that they
had introduced primari l y a new data structuring tool. Since
quantification is allowed in relation selectors, operators such as
join etc. can be built up out of these more basic things. But,
Dr. Atkinson continued, since they provided expressions like R:-E,
why not generalised set differences, for example? Professor Schmidt
responded that these things can be done with the basic tools
provided; R: -E is not a new operator - merely a shorthand.

Closing the discussion, Professor Randell asked what experience
they had with Pascal/R as a teaching tool. Professor Schmidt said
that they had taught it for a number of terms and had recently used
it for student exercises. He thought their experience could be summed
up in the words of one student who, after taking a course, asked
'what has PascallR to do with Data Bases? - it's just programming'.
Professor Schmidt regarded this as a compliment and suggested that it
proved that relational data bases were more naturally seen as an
extension to the data structuring tools available in programmming
languages, not as some special subject.

118

APPENDIX

Syntax of the Pascal/R language gl ven as extensions to the definition
of the Pascal language (see Pascal Re port in K. Jensen, N. Wirth:
Pascal User Manual and Report. Springer Ver l ag , New York, Heidelberg,
Berlin 1975, 2nd Edition):

Notation. terminology. and vocabulary

<special symbo!> ::;
:+ I :- I :& I all I

Data type definitions

...
~ I relat i on I dat abase

<unpacked structured type> ::; <array type>
<record type> , <set type I <file t ype>
<relation type> I <database type>

<relation type> ::;
relation < <relation key:> > of <rel ation element type>

<relation key.> ::;
<key component identife~ (,<key component identi fier.>}

<key component identifie~ ::; <identifie~

<database tYPE!> ::;
database <database section> (~database section>} end

<database section> ::; <database component identifier.>
{,<database component identifie~}
<relation type> I <empt y:>

Declarations and denotations of variables

<component variable> ::; <indexed variable> I
<field designator> I <file buffe~ I
<database component desi gnator.> I <select ed variable>

<database component designatoI~ ::;
<database variable>.<dat abase component identifier>

<database variable> ::; <identifier.>
<database component identifie~ ::; <identifie~

< selected variable> ::;
<relation variable> (<expression> (,<expression> } J

<relation variable> ::; <variable>

119

Expressions

<factor> ::= <variabl~ I <unsigned integer> I
<function designator> I <set> I <relation> ,
<quantified expression> , «expressioIt>) I
not <factor>

<relatioIt> : := ' r <relation element list;.]
<relation element list> ::=

<relation element> {,<relation element>; , <empty,>
<relation element> ::= <expression> I <selectioIt> I

<component selectioIt>
<selection> ::= <element denotation list;. : <selection expressioIt>
<component selection> ::= <component list> of <selectioIt>
<element denotation list;. ::=

. <element denotation> {,<element denotatioIt>}
<element denotation> ::=

~<element variabl~ in <relation expression>
<component list;. ::=

< <component designator.> {,<component designator.>; >
<component designator ::=

<element variable>.<component identifier.>
<element variable> ::= <variable identifier.>
<variable identifier.> ::= <identifier>
<selection expression> ::= <Boolean express ion>
<relation expression> ::= <expression>
<Boolean expression> ::= <expression>

<quantified expreSSion> ::= <quantifier.> <element variabl~
in <relation expression> <predicat~

<quantifier> ::= ~ I ill
<predicate> ::= «selection expression»

<quantified expression>

Statements

<assignment statement> ::= <variable> := <expressioIt>
<function identifier.> := <expressioIt> I
<relation variable> <relation update operator>

<relation expression>
<relation update operator.> ::= :+ , :- I :&

<for statement> ::=
for <control sectiOn> ££ <statement;.

< control section> ::=
<control variable> := <for list;. , <selection>

<with statement;. ::=
wi th <wi th variable list> do < statement;.

<wi th --;;ariable list;. ::= <with Variable> (,<wi th variabl~ 1
<with variable> ::= <record variable> I <database variable>

120

Relation handling procedures and functions

low (r, relem), next (r, relem), this (r, relem),
high (r, relem), prior (r,relem),
ear (r) .

121

