

Neither the conventional approach for an interface based on a
third component (user working area) which is mainly defined by a data
structure mediating between programs and data bases nor the more
advanced idea of extending a data base model by a control structure
are discussed in this paper. Also, new concepts for data definitions,
for example, user-defined type generators as in Euclid, Modula, or
Ada (cluster, module, or package) are not exploited.

A Pascal system extended by relations and relational data bases
(Pascal/R, see appendix) is implemented on a DECsystem/10.

Discussion

Professor van de Riet asked why, in Pascal/R, relations were
taken as a generalisation of the set type rather than the file type,
and also since relations are collections of records and Pascal allows
pointers to records, why were there no pointers to tuples in
relations? Professor Schmidt replied that they had started with the
set type because it provided a mechanism already present in Pascal
for the non-procedural generation of a collection of elements. Work
had been done on attempting to integrate the notion of reference with
that of relation - he recalled a paper from University of Toronto
CSRG of a couple of years back - the techniques were similar to those

used in Euclid: a reference had to be bound not merely to a type but
to a variable.

Dr. Atkinson asked why, since they had introduced a new data
type, had they not also introduced new operators for that type - for
example the algebraic operators. Professor Schmidt replied that they
had introduced primarily a new data structuring tool. Since
quantification is allowed in relation selectors, operators such as
join ete. can be built up out of these more basic things. But,
Dr. Atkinson continued, since they provided expressions like R:-E,
why not generalised set differences, for example? Professor Schmidt
responded that these things can be done with the basic tools
provided; R:-E is not a new operator - merely a shorthand.

Closing the discussion, Professor Randell asked what experience
they had with Pascal/R as a teaching tool. Professor Schmidt said
that they had taught it for a number of terms and had recently used
it for student exercises. He thought their experience could be summed
up in the words of one student who, after taking a course, asked
'what has Pascal/R to do with Data Bases? - it's just programming'.
Professor Schmidt regarded this as a compliment and suggested that it
proved that relational data bases were more naturally seen as an
extension to the data structuring tools available in programmming
languages, not as some special subject.

118

APPENDIX

Syntax of the Pascal/R language given as extensions to the definition

of the Pascal language (see Pascal Report in K. Jensen, N. Wirth:
Pascal User Manual and Report. Springer Verlag, New York, Heidelberg,

Berlin 1975, 2nd Edition):

Notation, terminology, and vocabulary

<special symbol> ::= ...
t+) = | & | 2ll | some | each | relation | database

Data type definitions

<unpacked structured type> ::= <array type> |
<record type> | <set type]| <file type> |
<relation type> | <database type> .

<relation type>» ::=

relation < <relation key> > of <relation element type>
<relation key> ::=

<key component identifer> {,<key component identifier>}

<key component identifiers> ::= <identifier>

<databage typer ::=
database <database sectiom> {;<database sectior>} end
<database sectiom» ::= <database component identifier>
{,<database component identifier>} :
<relation type> | <empty>

Declarations and denotations of wvariables

<component variable> ::= <indexed variable> |
<field designator> | <file buffer> |
<database component designator> | <selected variable>

<database component designator> ::=

<database variable>.<database component identifier>
<database variable> ::= <identifier>
<database component identifier> ::= <identifier>

<gelected variable> ::=

<relation variable> [<expressiom> {,<expression> }]
<relation variable> ::= <variable>

119

Expressions

<factor> ::= <variable> | <unsigned integer> | _
<function designator> | <set> | <relatior> |
<quantified expression> | (<expressiom>) |
not <factor>
<relatior> ::= [<relation element list>]
<relation element list> ::=
<relation element> {,<relation element> } | <empty>
<relation element> ::= <expression> | <selectiom> |
<component selectiom>
<selection> ::= <element denotation list> : «selection expressiormn>
<component selectio t:= <component list> of <selectiom>
<element denotation list> ::=
. <element denotatiorn> {,<element denotation>}
<element denotatiom» ::=
each <element variable> in <relation expressiom>
<component list> ::=
< <component designators> {,<tomponent designator>} >
<component designator :z=
<element variable>.<component identifiers
<element variable> ::= <variable identifier>
<variable identifier> ::= <identifier>
<selection expressiomn> ::= <Boolean expressior>
<relation expression> ::= <expression>
<Boolean expression> ::= <expressiom>

<quantified expressiom> ::= <quantifier> <element variable»
in <relation expression> <predicate>
<quantifier> ::= some | all
<predicate> ::= (<selection expression>) |
<quantified expression>

Statements

<assignment statement> ::= <variable> := <expressiom> |
<function identifier> := <expressiomn> |
<relation variable> <relation update operator>
<relation expression>
<relation update operator> ::= 4+ | = | :&

<for statement> ::=
for <control sectiom> do <statement>
<control sectio it
<control variable> := <for list> | <selectiom>

<with statements> s3:=

with <with variable list> do <statement>
<with variable list> ::= <with variable> {,<with variable>}
<with variable> ::= <record variable> | <database variable>

120

Relation handling procedures and functions

low (r, relem), next (r, relem;, this (v, relem),
high (r,relem), prior (r,relem

7
eor \r').

121

