

REKURSIV Smalltalk Instruction Ser

(2).
3).
(4).

(3).

(.

General Notes

The stack is pre-incremented, so always points at the topmost element. The
registers are :

fp
sp
argptr

and these are stack addresses, not objects.

However, there are also registers in object format :
current context
current receiver
current method

for fast access.
Garbage collection is automatic.
Execution times?

There are no addresses, no jumps, position-independent code, methods are
cached in.

Instructions needed only during bootstrapping can thereafter be deleted from
the control store map and thence rendered unavailable leaving only the

REKURSIV Smalitalk Instrucnon Ser

Linn Smart Compuring: Tel (44) 41 631 1483

THE MESSAGE AND METHOD CACHES

Message lookup, method invocation and method execution are all assisted by the
existence of caches.

That is, the instruction cache is loaded only with those methods which get invoked.
These are loaded dynamically, when needed. This cache 1s withun the processor
architecture, close to the sequencer, so that opcode decoding and operand stripping can
be pipelined.

Each method so cached is tagged with the start address of its codestream in the
instruction cache. This gets set when the method’s codestreamn is first loaded into the
cache. A simple examination of a method reveals both whether or not it has been cached.
and identifies its stant point in the cache in the case that is has.

The instruction cache is filled on a first-come basis, so when it overflows all methods
which point into it are reset to indicate that they are no longer cached, and the cache
pointer reset to the base of the cache. To facilitate this unlinking, an array of method
identifiers is kept, and this is automatically scanned when the cache is cleared and each
method identified by it has its cache address set to zero, to indicate not-cached.

Thus, given a method, it can quickly be established that it has been cached and, because
of being 'locked into’ the processor’s sequencer, it can executed very efficiendy. Clearly,
therefore, because it is truly a method cache, there will be no page faults from the
codestream during execution of a method, and so no need for disk access. The instruction
cache is quite large, up to 128K instructions, and because methods tend to be fairly shor,
a few dozen instructions, there can be many methods in the cache at any given time. To
remove the possibility of the cache management table causing a premature flush, the
cached-method table grows automatically when necessary.

It is in the nature of message-based systems that much time can be spent merely
searching the message dictionaries associated with any given item of data, trying to find
the meaning of a pamicular message. This could involve searching the entire class
hierarchy, to find the proper method. An optimisation over repeatedly searching the class
hierarchy is to maintain a cache that records which method was found each time a
particular pair of selector and receiver class are looked up. If that message has been sent
to that class of data before, the cache identifies the appropriate method, so a full search
is not necessary.

The message cache is organised as a triple. It records a binding between a selector. 2
class and a method. Given the selector and the class, it provides the proper method. A
straightforward hashing algorithm is employed, using the low order bits of the selector
and the class to provide a cache index. If the selector and class maich those of the cache.
the method is extracted. If they do not match, the method is found by searching the class
hierarchy of the receiver for that message and the message. class and method are then
written to the cache for future reference. This cache can grow if necessan

The access time for the message cache is half a dozen cycles, to establish that there ..
no match. with a further three cycles to extract the method should a match occur. This 1s
likely 1o be far faster than searching even the first-level class’s dictionary.

Once the desired method has been identified, it then takes only half a dozen more cycles
to establish whether its codestream has been loaded into the instruction cache, and to
stant setting this up in the pipeline.

[TIA

August 1988
oy Linn Smart Computing: Tel (44) 41 631 1483

August 1988

REKURSIV Smalitalk Instruction Set o

Performance

The message cache performed, in small scale tests using different hashing algorithms, as
follows

hash %slots %hits cycles uS

1 13 81 154299 22603
2 12 81 155172 22814
3 11 78 162370 23744
0 0 0 161207 24198
4 5 47 169733 25170
5 4 50 171657 2547"

(The cache had 255 slots, and 1903 messages sent during the test).
for hashing algorithms

none

(class XOR message) 5

(class ADD message) ¢

(class 0.3 << 4) message 3

((NOT class) AND message) ; g

(class AND message) ¢

wm o WKN =0

where the result is always ORed with one to guarantee a valid (non-zero) index.

The favourite algorithm is therefore the XOR of the message and receiver class. Those
algorithms which performed poorly were actually disadvantageous, presenting an
overhead rather than an optimisation. It should be noted, however, that these tests were
carried out on a very small execution profile, some 25 milliseconds during which less than
2000 messages were sent; longer tests on a much larger system will be needed to
properly evaluate the benefits of the message cache.

Linn Smart Compuring: Tel (44) 41 631 1483 August 1988

ZEIA

VI.33

DISCUSSION

The discussion began by Dr. Kay asking Professor Harland how small he hoped to
make the Recusiv board. Professor Harland replied that their aim was to reduce the size to
that of a normal VME card, with double eurocard connections. Smaller that this was unlik-
ley, and the target was to achieve this reduction by next year.

Professor Randell asked whether the essence of the Rekursiv architecture could be
summarised as being the ability to execute tests and conditional branches in parallel. Pro-
fessor Harland replied that this capability was only one of the features of the architecture.

Professor Morrison asked Professor Harland how confident he thought his type system
was for representing all types, as concern was expressed about the size of the available
tags. Professor Harland replied that the tags could also be a word (in addition to the 5 bits
used by the compact types), and he thought that would be sufficient. Professor Atkinson
followed up on the previous question, being worried about the type system not supporting
persistence data fully. Professor Harland replied that Rekursiv does not support a type sys-
tem, but such problems could be solved by building suitable tools such as a browser to
browse the objects in the object store.

A member of the audience pointed out that the buyers of computer hardware are wil-
ling to pay extra for faster processing, but questioned whether they are also willing to pay
extra for the security of the type system supported by the Rekursiv architecture. Professor
Harland disagreed, pointing out that the type security supported by the architecture was
becoming a requirement, in particular for military use, and that to date 17 machines had
been sold. In reply to a question asking whether these machines had been bought by mili-
tary users, Professor Harland replied that none had been bought by the miltary. The prob-
lem with buyers such as the military being that they take such a long time to think about
buying a product that once decided, then the product is already obselete.

Professor van der Poel asked where the names Rekursiv, Objekt etc came from. Pro-
fessor Harland replied that the company (Linn Products) make hi-fi, and have a habit of
misspelling names, so that when the marketing people were consultated as to what to call
the architecture, the fact that it suppoprts recusive computations in the micro-code sug-
gested that it be called Rekursiv, with the name clearly being a misspelling of recursive.
This theme continued with the other components of the architecture.

Professor Randell asked whether a number of the machines could be used together.
Professor Harland replied that this was one of the aims of the group, and that his main
interest was now in constructing a distributed object store that could be shared by a
number of machines. One possibility being to use 6 bits of the object id to name a particu-
lar machine. Professor Harland though that this was an interesting problem, with lots of
tricky problems. Professor Atkinson stated that a similar approach had been adopted by
the IBM model 38 architecture, but there larger word sizes had been used. Professor Har-
land replied that he throught his approach would be sufficient to construct a distributed
object store.

